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Stochastic volatility
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Cliquet spreads

� Set of forward starting performance spread options

� Price not deductable from plain vanillas � we need a model

� Model should deliver forward skew � forget local volatility

� Forward start � mainly delta neutral

� Spread option � use strikes to set them vega neutral

� More or less delta and vega neutral, where is the risk then?
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Quoting the smile by delta
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Stochastic skewness
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Stochastic skew models

� Empirically the level and the slope of the volatility smirk 
fluctuate largely independently

� Forex: distributions are usually skewed to the weaker currency, the 
direction of the strength, thus the sign of the skew may change

� Equity: default expectation, risk-averseness and jump-to-default 
premium are stochastic, thus the level of skew may change

� Rates: anticipated central bank actions may imply significant skew, 
also the sign of the skew may change

� Commodity: upside jumps are sometime more probable than 
downside jumps, also the sign of the skew may change

� Focus on the stochastic correlation between asset and 
variance returns
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Stochastic volatility of volatility
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Mean-reverting asset prices
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Term structured stochastic skewness
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Volatility - smile - maturity relationship
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Commodity modelling requirements

� Mean-reversion in asset prices – short-term, long-term

� Stochastic convenience yield

� Decreasing volatility term structure

� Multi-factor stochastic volatility – short-term, long-term

� Volatility smile also on long-term

� Unspanned stochastic volatility (cannot model the skew changes)

� Equilibrium volatility level is stochastic also

� Jumps

� Discontinuous asset path

� Closer futures jump larger than longer futures

� Stochastic mean-reverting jump frequency

� Stochastic implied volatility skew

� Reduce the need for stochastic volatility
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Affine jump-diffusion models
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Affine transform
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Affine extended transform
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Affine characteristic of log-returns
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� How to price vanilla options?

� Specify the underlying affine jump-diffusion process by SDE

� Translate SDE into Riccati equations to be solved

� Solve the ODE either analytically or numerically

� Use FFT or direct integration as Fourier inversion to calculate option prices



183rd Conference on Numerical Methods in Finance

Agenda presentation

1. Modelling Financial Asset Price Dynamics

2. Affine Jump-Diffusion Processes

3. Solving the Riccati Equations

4. Option pricing by Fourier Inversion

5. Performance

6. Summary and Questions



193rd Conference on Numerical Methods in Finance

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

re1

im1

re2

im2

re3

im3

Classical 4th order explicit Runge-Kutta

Trolle-Schwartz, u = 20, number of time steps = 20



203rd Conference on Numerical Methods in Finance

-12

-10

-8

-6

-4

-2

0

2

4

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

re1

im1

re2

im2

re3

im3

Classical 4th order explicit Runge-Kutta

Trolle-Schwartz, u = 92, number of time steps = 20



213rd Conference on Numerical Methods in Finance

-12

-10

-8

-6

-4

-2

0

2

4

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

re1

im1

re2

im2

re3

im3

Adaptive 4th and 5th order explicit Runge-Kutta

Trolle-Schwartz, u = 92, initial number of steps = 20, final number of steps = 21



223rd Conference on Numerical Methods in Finance

-18

-13

-8

-3

2

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

re1

im1

re2

im2

re3

im3

Adaptive 4th and 5th order explicit Runge-Kutta

Trolle-Schwartz, u = 118, initial number of steps = 20, final number of steps = 28



233rd Conference on Numerical Methods in Finance

-45

-35

-25

-15

-5

5

15

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

re1

im1

re2

im2

re3

im3

Adaptive 4th and 5th order explicit Runge-Kutta

Trolle-Schwartz, u = 300, initial number of steps = 20, final number of steps = 59



243rd Conference on Numerical Methods in Finance

-45

-35

-25

-15

-5

5

15

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

re1

im1

re2

im2

re3

im3

Adaptive 3rd and 4th order implicit Rosenbrock

Trolle-Schwartz, u = 300, final number of steps = 12



253rd Conference on Numerical Methods in Finance

Solve the ODE numerically

� As we use quadratures to integrate functions, use 
quadratures to integrate differential equations
� Numerical Recipes in C, Chapter 16

� Explicit
� Classical 4th order Runge-Kutta method

� Fixed stepsize, moderate precision, 4 evaluations / step

� Variable stepsize Bulirsch-Stoer method
� High precision with extrapolation, good for heavy function evaluations

� Adaptive stepsize 4th and 5th order Runge-Kutta method
� 6 evaluations / step, adaptive stepsize

� Weights: Runge-Kutta-Fehlberg, Cash-Karp

� Implicit
� 3rd and 4th order Rosenbrock method

� 1 function and derivatives evaluation / step +
1 LU decomposition + 4 back substitution

� Weights: Kaps-Rentrop, Shampine
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Solve the ODE numerically (cont.)

� Affine asset pricing models

� Both ODE and its derivatives are closed-form

� Polynomial form, only basic operations (+,*)

� Dimension of the differential equation is low, <10

� Usually stiff problem for high value of u

� Implicit Rosenbrock method with Shampine weights

� Minimum stepsize = initial step = 1 day

� Maximum 200 integration steps (convergence test)

� Control measure for adaptive stepsize control

� Accept or reject the last step

� Decide about the size of the next step
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Control measure

� Calculate the largest absolute error between the 4th and the 5th order 
estimations – take both the real and imaginary parts

� Take the largest increment (yi-yi-1) from the last step as tolerance

� Normalize both the absolute error and the tolerance by time (x)

� Calculate proportion of tolerance / error

� If largest error is zero � accept the step

� But, never step next more than 5 times bigger (even then we can reach 10 
years in 6 steps starting with a 1 day initial step)

� If proportion bigger than 1 � accept the step

� New step = 95% * old step * (proportion ^ 1/5)

� Expand with lower exponent, 95% for conservativeness

� If proportion smaller than 1 � reject the step

� New step = 95% * old step * (proportion ^ 1/4)

� Shrink with larger exponent, 95% for conservativeness
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Characteristic functions

� In probability theory it is the continuous Fourier 
transformation of the probability density function

� Probability density function is the continuous inverse Fourier 
transformation of the characteristic function

� For independent random variables
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Pricing using characteristic functions

� Long call

� Make an adjustment for later purposes

� Apply the Fourier and then the inverse Fourier transform
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Pricing using characteristic functions

( ) ( ) ( )

( ) ( )

( )
( )

( )

( )
( ) ( )

( )
( )( )

1

2 2

1

2 2

2 2

2 1

1

2 1

1
1

2 1

ivk x k k k

T T

k

x

x k k k ivk

T

iv x

T

iv x

T

T

v e e e q x dxdk

q x e e e dk dx

e
q x dx

v i v

e q x dx
v i v

v i
v i v

α α

α α

α

α

ψ

α α α

α α α

ϕ α
α α α

∞ ∞
+ +

−∞

∞
+ +

−∞ −∞

∞ + +

−∞

∞
+ +

− ∞

= − =

= − =

= =
+ − + +

= =
+ − + +

= − +
+ − + +

∫ ∫

∫ ∫

∫

∫

payoff process



323rd Conference on Numerical Methods in Finance

FFT based option pricing (Carr-Madan)

� v = ft→GetV(); // Grid in the integration space

� k = ft→GetK(); // Grid in the log-strike space

� data = payoff→GetU(v); // Get the input parameter for the CF

� cf→FromUToPhi(data); // Evaluated CF

� payoff→FromPhiToPsi(v, data); // Apply the payoff

� ft→FromPsiToIntegrand(v, data); // Get the integrand

� ft→Weightening(data); // Numerical trick for DFT

� ft→Transform(data); // Discrete Fourier transformation

� payoff→ModifyBack(k, data); // Reverse the adjustment

� ft→Interpolate(data, logStrike); // Interpolate the vector
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Direct integration based option pricing 

� From Jim Gatheral’s book:

� Advantages

� No need anymore for equal grid steps

� Pricing error can be targeted (eg. set to 0.1 vega in calibrations)

� Use adaptive quadratures like the adaptive Simpson method

� Adaptive upper bound (I start with upper bound = 62.5)

� Caching if several strikes are computed at the same time

� Vectorized version of the adaptive Simpson method
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Control variate for Fourier inversion

� Calculate CF derivatives numerically (eps = 1e-5)

� Better convergence achieved both for FFT and direct integration
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Bates = Heston + jumps

Var0 = 0.04, VarInf = 0.06, Kappa = 0.6, VolOfVol = 0.2, Rho = -0.5,
JumpFreq = 5, JumpMean = -0.04, JumpVol = 0.05

For one month the standard deviation is 26%
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Control variate for Fourier inversion

K = 80%:   NoControl - 269 fun.eval., Control - 49 fun.eval.

K = 100%:   NoControl - 265 fun.eval., Control - 21 fun.eval.
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Performance measurement

� Our objective: use the technique for global calibrations
� 5 reasonable strikes and 6 maturities per valuation dates

� Calibrate with pricing precision of 0.1 vega (bid-ask spread ≈ ±vega)

1. Consider the Bates model with the earlier parameterization

2. Choose six tenors = {1W, 1M, 3M, 1Y, 2Y, 5Y}

3. Choose five strikes = {0.1∆, 0.25∆, 0.5∆, 0.75∆, 0.9∆}

4. Calculate BS implied volatilities per delta per tenor

5. Calculate moneyness for each tenor

6. Calculate the 0.1 vegaBS as targeted precision for each node

7. Measure the time to price vanilla options on the mesh
(30 nodes)
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Performance results

� Control variate makes FFT slightly slower, but much more precise

� Direct integration is much faster than FFT!

� Option pricing using numerically evaluated characteristic functions is 
slower than using analytical ones, but not in magnitudes! (< 10 times)

� Control variate makes direct integration even faster

2.55 ms6.91 ms
Direct integration

Numerical CF

0.35 ms1.05 ms
Direct integration

Analytic CF

306 ms301 ms
Carr-Madan FFT (4096, α = 1.5)

Numerical CF

49 ms43 ms
Carr-Madan FFT (4096, α = 1.5)

Analytic CF

With control variateNo control variatewritten in C++, executed on Intel 2Ghz laptop
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Logarithm of the Bates CF
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Riccati equations for the Bates CF
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� Only one exponential per u in case of Bates (no exp in case of Heston)

� Polynomial Riccati equations and derivatives
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Summary

� Solve the ODEs either analytically or numerically
� Solving numerically, use control measure to apply adaptive stepsize methods

� The ODEs may become stiff for high value of u
� Solving a stiff problem needs more time

� Use implicit schemes to solve the ODEs

� Even in case of jumps the derivatives have polynomial form, thus also the 
Jacobian is polynomial

� Pricing by Fourier inversion
� Avoid using high u� use direct integration rather than FFT

� Use the control variate technique

� Numerical solution for ODEs are competitive with analytical solutions

� Use LAPACK, never use the STL complex class in VC++, catch floating 
point exceptions and handle them, use Volodymyr Myrnyy’s FFT 
implementation with C++ template metaprogramming (vs. FFTW)
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Questions 

� Contact details:

Péter Dobránszky

peter@dobranszky.com

� Further details:

http://peter.dobranszky.com


