F
 FInaLYSe
 Composing Solutions for Finance

option pricing using numericallu evaluated characteristic functions

Péter dobránszku
$16^{\text {th }}$ ApriL, paris

Agenda presentation

I. Modelling Financial Asset Price Dynamics

2. Affine Jump-Diffusion Processes
3. Solving the Riccati Equations
4. Option pricing by Fourier Inversion
5. Performance
6. Summary and Questions

Stochastic volatility

Cliquet spreads

- Set of forward starting performance spread options

$$
\text { payoff }=\sum_{i} \max \left(f_{i}, \min \left(c_{i}, \frac{S_{i}-S_{i-1}}{S_{i-1}}\right)\right)
$$

- Price not deductable from plain vanillas \rightarrow we need a model
- Model should deliver forward skew \rightarrow forget local volatility
- Forward start \rightarrow mainly delta neutral
- Spread option \rightarrow use strikes to set them vega neutral
- More or less delta and vega neutral, where is the risk then?

Quoting the smile by delta

Stochastic skewness

___ EURUSD 25R3M / V3M __ EURUSD 25R1Y / V1Y __ EURUSD 25R4Y / V4Y

Stochastic skew models

- Empirically the level and the slope of the volatility smirk fluctuate largely independently
> Forex: distributions are usually skewed to the weaker currency, the direction of the strength, thus the sign of the skew may change
> Equity: default expectation, risk-averseness and jump-to-default premium are stochastic, thus the level of skew may change
> Rates: anticipated central bank actions may imply significant skew, also the sign of the skew may change
> Commodity: upside jumps are sometime more probable than downside jumps, also the sign of the skew may change
- Focus on the stochastic correlation between asset and variance returns

Stochastic volatility of volatility

_——EURUSD 25B3M / V3M ——EEURUSD 25B1Y / V1Y __ EURUSD 25B4Y / V4Y

Mean-reverting asset prices

Term structured stochastic skewness

Volatility - smile - maturity relationship

$$
-\mathrm{CL} 3 \text { 25B / V ——CL12 25B / V - CL60 25B / V }
$$

WTI light sweet crude oil (CL) butterflies over ATM volatility levels

Commodity modelling requirements

- Mean-reversion in asset prices - short-term, long-term
> Stochastic convenience yield
> Decreasing volatility term structure
- Multi-factor stochastic volatility - short-term, long-term
> Volatility smile also on long-term
> Unspanned stochastic volatility (cannot model the skew changes)
> Equilibrium volatility level is stochastic also
- Jumps
> Discontinuous asset path
> Closer futures jump larger than longer futures
- Stochastic mean-reverting jump frequency
> Stochastic implied volatility skew
> Reduce the need for stochastic volatility

Agenda presentation

I. Modelling Financial Asset Price Dynamics

2. Affine Jump-Diffusion Processes

3. Solving the Riccati Equations
4. Option pricing by Fourier Inversion
5. Performance
6. Summary and Questions

Affine jump-diffusion models

$$
\begin{gathered}
d \mathbf{X}_{t}=\left(K_{0}+K_{1} \cdot \mathbf{X}_{t}\right) d t+\sigma\left(\mathbf{X}_{t}, t\right) d \mathbf{W}_{t}^{\mathbb{Q}}+d \mathbf{J}_{t} \\
\left(\sigma\left(\mathbf{X}_{t}, t\right) \sigma\left(\mathbf{X}_{t}, t\right)^{T}\right)_{i j}=H_{0 i j}+H_{1 i j} \cdot \mathbf{X}_{t} \\
\Lambda_{t}=l_{0}+l_{1} \cdot \mathbf{X}_{t} \\
\theta_{\nu}(u)=\int \exp (u \cdot z) d \nu(z) \\
H_{0 i j}, l_{0} \in \mathbb{R}, K_{0}, H_{1 i j}, l_{1} \in \mathbb{R}^{N}, K_{1} \in \mathbb{R}^{N \times N}
\end{gathered}
$$

Affine transform

$$
\psi^{\mathbf{x}}\left(u, \mathbf{X}_{t}, t, T\right)=E^{\mathbb{Q}}\left[e^{-\int_{t}^{T}\left(\rho_{0}+\rho_{1} \cdot \mathbf{X}_{u}\right) d u+u \cdot \mathbf{X}_{T}} \mid \mathcal{F}_{t}\right]=e^{\alpha(t)+\beta(t) \cdot \mathbf{x}_{t}}
$$

with alpha and beta satisfying the following complex-valued matrix Riccati equations

$$
\begin{aligned}
& \frac{d \beta(t)}{d t}=\rho_{1}-K_{1}^{T} \beta(t)-\frac{1}{2} \beta(t)^{T} H_{1} \beta(t)-l_{1}(\theta(\beta(t))-1) \\
& \frac{d \alpha(t)}{d t}=\rho_{0}-K_{0}^{T} \beta(t)-\frac{1}{2} \beta(t)^{T} H_{0} \beta(t)-l_{0}(\theta(\beta(t))-1)
\end{aligned}
$$

with boundary conditions

$$
\beta(T)=u, \quad \alpha(T)=0
$$

Affine extended transform

$$
\begin{aligned}
\phi^{X}\left(v, u, \mathbf{X}_{t}, t, T\right) & =E^{\mathbb{Q}}\left[v \mathbf{X}_{T} \cdot e^{-\int_{t}^{T}\left(\rho_{0}+\rho_{1} \cdot \mathbf{X}_{u}\right) d u+u \cdot \mathbf{x}_{T}} \mid \mathcal{F}_{t}\right]= \\
& =\psi^{X}\left(u, \mathbf{X}_{t}, t, T\right) \cdot\left(A(t)+B(t) \mathbf{X}_{t}\right)
\end{aligned}
$$

with A and B satisfying the following complex-valued matrix Riccati equations

$$
\begin{aligned}
& \frac{d B(t)}{d t}=K_{1}^{T} B(t)+\beta(t)^{T} H_{1} B(t)+l_{1} \nabla \theta(\beta(t)) B(t) \\
& \frac{d A(t)}{d t}=K_{0}^{T} B(t)+\beta(t)^{T} H_{0} B(t)+l_{0} \nabla \theta(\beta(t)) B(t)
\end{aligned}
$$

with boundary conditions

$$
B(T)=v, \quad A(T)=0
$$

Affine characteristic of log-returns

$$
\begin{gathered}
S_{t}=e^{a+b \mathbf{x}_{t}} \\
\varphi_{S_{T}}(u)=E^{\mathbb{Q}}\left[e^{i u\left(a+b \mathbf{X}_{t}\right)} \mid \mathcal{F}_{t}\right]=e^{i u a+\alpha(i u b, t)+\beta(i u b, t) \cdot \mathbf{x}_{t}}
\end{gathered}
$$

- How to price vanilla options?
> Specify the underlying affine jump-diffusion process by SDE
> Translate SDE into Riccati equations to be solved
> Solve the ODE either analytically or numerically
> Use FFT or direct integration as Fourier inversion to calculate option prices

Agenda presentation

I. Modelling Financial Asset Price Dynamics
2. Affine Jump-Diffusion Processes
3. Solving the Riccati Equations
4. Option pricing by Fourier Inversion
5. Performance
6. Summary and Questions

Classical 4 ${ }^{\text {th }}$ order explicit Runge-Kutta

Classical $4^{\text {th }}$ order explicit Runge-Kutta

Adaptive $4^{\text {th }}$ and $5^{\text {th }}$ order explicit Runge-Kutta

Trolle-Schwartz, $u=92$, initial number of steps $=20$, final number of steps $=21$

Adaptive $4^{\text {th }}$ and $5^{\text {th }}$ order explicit Runge-Kutta

Trolle-Schwartz, u = II8, initial number of steps $=20$, final number of steps $=28$

Adaptive $4^{\text {th }}$ and $5^{\text {th }}$ order explicit Runge-Kutta

Trolle-Schwartz, $u=300$, initial number of steps $=20$, final number of steps $=59$

Adaptive $3^{\text {rd }}$ and $4^{\text {th }}$ order implicit Rosenbrock

Trolle-Schwartz, $u=300$, final number of steps $=12$

Solve the ODE numerically

- As we use quadratures to integrate functions, use quadratures to integrate differential equations
> Numerical Recipes in C, Chapter 16
- Explicit
> Classical $4^{\text {th }}$ order Runge-Kutta method
\checkmark Fixed stepsize, moderate precision, 4 evaluations / step
> Variable stepsize Bulirsch-Stoer method
\checkmark High precision with extrapolation, good for heavy function evaluations
> Adaptive stepsize $4^{\text {th }}$ and $5^{\text {th }}$ order Runge-Kutta method
$\checkmark 6$ evaluations / step, adaptive stepsize
\checkmark Weights: Runge-Kutta-Fehlberg, Cash-Karp
- Implicit
> $3^{\text {rd }}$ and $4^{\text {th }}$ order Rosenbrock method
\checkmark I function and derivatives evaluation / step + I LU decomposition + 4 back substitution
\checkmark Weights: Kaps-Rentrop, Shampine

Solve the ODE numerically (cont.)

- Affine asset pricing models
> Both ODE and its derivatives are closed-form
> Polynomial form, only basic operations (+,*)
> Dimension of the differential equation is low, <10
> Usually stiff problem for high value of u
- Implicit Rosenbrock method with Shampine weights
- Minimum stepsize = initial step $=1$ day
- Maximum 200 integration steps (convergence test)
- Control measure for adaptive stepsize control
> Accept or reject the last step
> Decide about the size of the next step

Control measure

- Calculate the largest absolute error between the $4^{\text {th }}$ and the $5^{\text {th }}$ order estimations - take both the real and imaginary parts
- Take the largest increment $\left(y_{i}-y_{i-1}\right)$ from the last step as tolerance
- Normalize both the absolute error and the tolerance by time (x)
- Calculate proportion of tolerance / error
- If largest error is zero \rightarrow accept the step
> But, never step next more than 5 times bigger (even then we can reach 10 years in 6 steps starting with a I day initial step)
- If proportion bigger than I \rightarrow accept the step
> New step $=95 \%$ * old step * (proportion ^ $1 / 5$)
> Expand with lower exponent, 95% for conservativeness
- If proportion smaller than I \rightarrow reject the step
> New step $=95 \%$ * old step * (proportion ^ I/4)
> Shrink with larger exponent, 95\% for conservativeness

Agenda presentation

I. Modelling Financial Asset Price Dynamics
2. Affine Jump-Diffusion Processes
3. Solving the Riccati Equations
4. Option pricing by Fourier Inversion
5. Performance
6. Summary and Questions

Characteristic functions

- In probability theory it is the continuous Fourier transformation of the probability density function

$$
\varphi_{X}(u)=E\left[e^{i u X}\right]=\int_{-\infty}^{\infty} e^{i u x} f_{X}(x) d x
$$

- Probability density function is the continuous inverse Fourier transformation of the characteristic function

$$
f_{X}(x)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} e^{i u x} \overline{\varphi_{X}(u)} d u
$$

- For independent random variables

$$
\varphi_{X+Y}(u)=E\left[e^{i u(X+Y)}\right]=E\left[e^{i u X} e^{i u Y}\right]=E\left[e^{i u X}\right] \cdot E\left[e^{i u Y}\right]=\varphi_{X}(u) \cdot \varphi_{Y}(u)
$$

Pricing using characteristic functions

- Long call

$$
c_{T}(K)=e^{-r T} F_{T} \int_{k}^{\infty}\left(e^{x}-e^{k}\right) q_{T}(x) d x
$$

- Make an adjustment for later purposes

$$
c_{T}(K)=e^{-r T} F_{T} e^{-\alpha k} \int_{k}^{\infty}\left(e^{x+\alpha k}-e^{k+\alpha k}\right) q_{T}(x) d x
$$

- Apply the Fourier and then the inverse Fourier transform

$$
\begin{aligned}
& \begin{aligned}
& c_{T}(K)=e^{-r T} F_{T} \frac{e^{-\alpha k}}{2 \pi} \int_{-\infty}^{\infty} e^{-i v k} \int_{-\infty}^{\infty} e^{i v k} \int_{k}^{\infty}\left(e^{x+\alpha k}-e^{k+\alpha k}\right) q_{T}(x) d x d k d v= \\
&=e^{-r T} F_{T} \frac{e^{-\alpha k}}{2 \pi} \int_{-\infty}^{\infty} e^{-i v k} \psi_{T}(v) d v=e^{-r T} F_{T} \frac{e^{-\alpha k}}{\pi} \int_{0}^{\infty} e^{-i v k} \psi_{T}(v) d v \\
& \text { technique }
\end{aligned} \text { 3rd Conference on Numerical Methods in Finance }
\end{aligned}
$$

Pricing using characteristic functions

$$
\begin{aligned}
\psi_{T}(v) & =\int_{-\infty}^{\infty} e^{i v k} \int_{k}^{\infty}\left(e^{x+\alpha k}-e^{k+\alpha k}\right) q_{T}(x) d x d k= \\
& =\int_{-\infty}^{\infty} q_{T}(x) \int_{-\infty}^{x}\left(e^{x+\alpha k}-e^{k+\alpha k}\right) e^{i v k} d k d x= \\
& =\int_{-\infty}^{\infty} q_{T}(x) \frac{e^{(\alpha+1+i v) x}}{\alpha^{2}+\alpha-v^{2}+i(2 \alpha+1) v} d x= \\
& =\frac{1}{\alpha^{2}+\alpha-v^{2}+i(2 \alpha+1) v} \int_{-\infty}^{\infty} e^{(\alpha+1+i v) x} q_{T}(x) d x= \\
& =\frac{1}{\alpha^{2}+\alpha-v^{2}+i(2 \alpha+1) v} \varphi_{T}(v-(\alpha+1) i)
\end{aligned}
$$

FFT based option pricing (Carr-Madan)

- $v=\mathrm{ft} \rightarrow \mathrm{GetV}()$; // Grid in the integration space
- $\mathrm{k}=\mathrm{ft} \rightarrow \operatorname{GetK}()$; // Grid in the log-strike space
- data $=$ payoff \rightarrow GetU(v); // Get the input parameter for the CF
- cf \rightarrow FromUToPhi(data); // Evaluated CF
- payoff \rightarrow FromPhiToPsi(v, data); // Apply the payoff
- $\mathrm{ft} \rightarrow$ FromPsiTolntegrand(v, data); // Get the integrand
- $\mathrm{ft} \rightarrow$ Weightening(data); // Numerical trick for DFT
- $\mathrm{ft} \rightarrow$ Transform(data); // Discrete Fourier transformation
- payoff \rightarrow Modify Back(k, data); // Reverse the adjustment
- $\mathrm{ft} \rightarrow$ Interpolate(data, logStrike); // Interpolate the vector

Direct integration based option pricing

- From Jim Gatheral's book:

$$
c_{T}(K)=e^{-r T} F_{T}\left(1-\frac{e^{k / 2}}{\pi} \int_{0}^{\infty} \frac{d v}{v^{2}+1 / 4} \operatorname{Re}\left[e^{-i v k} \varphi_{T}(v-i / 2)\right]\right)
$$

- Advantages
> No need anymore for equal grid steps
> Pricing error can be targeted (eg. set to 0.1 vega in calibrations)
- Use adaptive quadratures like the adaptive Simpson method
> Adaptive upper bound (I start with upper bound $=62.5$)
- Caching if several strikes are computed at the same time
> Vectorized version of the adaptive Simpson method

Control variate for Fourier inversion

$$
\begin{aligned}
c_{T}(K) & =c_{T}^{B S}(K)+c_{T}(K)-c_{T}^{B S}(K)= \\
& =c_{T}^{B S}(K)+e^{-r T} F_{T}\left(1-\frac{e^{k / 2}}{\pi} \int_{0}^{\infty} \frac{d v}{v^{2}+1 / 4} \operatorname{Re}\left[e^{-i j k}\left(\varphi_{T}(v-i / 2)-\varphi_{T}^{B S}(v-i / 2)\right)\right]\right) \\
\sigma^{B S} & =\sqrt{V-M^{2}}=\sqrt{\left[-\operatorname{Re} \varphi_{T}^{\prime \prime}(0)\right]-\left[\operatorname{Im} \varphi_{T}^{\prime}(0)\right]^{2}}
\end{aligned}
$$

- Calculate CF derivatives numerically (eps = le-5)
- Better convergence achieved both for FFT and direct integration

Bates $=$ Heston $\boldsymbol{+}$ jumps

For one month the standard deviation is 26%

Control variate for Fourier inversion

$$
\begin{aligned}
& K=80 \%: \quad \text { NoControl }-269 \text { fun.eval., Control - } 49 \text { fun.eval. } \\
& K=100 \%: \quad \text { NoControl }-265 \text { fun.eval., Control }-21 \text { fun.eval. }
\end{aligned}
$$

Agenda presentation

I. Modelling Financial Asset Price Dynamics
2. Affine Jump-Diffusion Processes
3. Solving the Riccati Equations
4. Option pricing by Fourier Inversion
5. Performance
6. Summary and Questions

Performance measurement

- Our objective: use the technique for global calibrations
> 5 reasonable strikes and 6 maturities per valuation dates
> Calibrate with pricing precision of 0.1 vega (bid-ask spread $\approx \pm$ vega)
I. Consider the Bates model with the earlier parameterization

2. Choose six tenors $=\{I W, I M, 3 M, I Y, 2 Y, 5 Y\}$
3. Choose five strikes $=\{0.1 \Delta, 0.25 \Delta, 0.5 \Delta, 0.75 \Delta, 0.9 \Delta\}$
4. Calculate BS implied volatilities per delta per tenor
5. Calculate moneyness for each tenor
6. Calculate the 0.1 vega $_{B S}$ as targeted precision for each node
7. Measure the time to price vanilla options on the mesh (30 nodes)

Performance results

written in C++, executed on Intel 2Ghz laptop	No control variate	With control variate
Carr-Madan FFT (4096, $\alpha=1.5)$	43 ms	49 ms
Analytic CF		

- Control variate makes FFT slightly slower, but much more precise
- Direct integration is much faster than FFT!
- Option pricing using numerically evaluated characteristic functions is slower than using analytical ones, but not in magnitudes! (< 10 times)
- Control variate makes direct integration even faster

Logarithm of the Bates CF

$$
\begin{aligned}
d & =\operatorname{sqrt}\left((A+B \cdot u)^{2}+C \cdot(i+u) \cdot u\right) \\
e & =D+E \cdot u-d \\
f & =\exp (F \cdot d) \\
g & =\frac{e}{D+E \cdot u+d} \\
h & =g \cdot f \\
\log \varphi & =F \cdot\left(G \cdot e-2 \cdot \log \frac{1-h}{1-g}\right)+H \cdot e \cdot \frac{1-f}{1-h}+ \\
& +I \cdot u+J \cdot(\exp ((K+L \cdot u) \cdot u)-1)
\end{aligned}
$$

- Costly: complex sqrt, complex exp (2 times), complex log

Riccati equations for the Bates CF

$$
\begin{gathered}
A=F \cdot u+G \cdot(\exp ((H+I \cdot u) \cdot u)-1) \\
C=(J+0.5 \cdot u) \cdot u \\
D=K+L \cdot u \\
y=\left[\begin{array}{l}
y_{1} \\
y_{2}
\end{array}\right] \quad f=\frac{d y}{d x}=\left[\begin{array}{c}
A+B \cdot y_{2} \\
C+\left(D+E \cdot y_{2}\right) \cdot y_{2}
\end{array}\right] \\
\qquad \frac{d f}{d x}=\left[\begin{array}{l}
0 \\
0
\end{array}\right] \quad \frac{d f}{d y}=\left[\begin{array}{cc}
0 & 0 \\
B & D+2 \cdot E
\end{array}\right]
\end{gathered}
$$

- Only one exponential per u in case of Bates (no exp in case of Heston)
- Polynomial Riccati equations and derivatives

Agenda presentation

I. Modelling Financial Asset Price Dynamics
2. Affine Jump-Diffusion Processes
3. Solving the Riccati Equations
4. Option pricing by Fourier Inversion
5. Performance
6. Summary and Questions

Summary

- Solve the ODEs either analytically or numerically
> Solving numerically, use control measure to apply adaptive stepsize methods
- The ODEs may become stiff for high value of u
> Solving a stiff problem needs more time
> Use implicit schemes to solve the ODEs
> Even in case of jumps the derivatives have polynomial form, thus also the Jacobian is polynomial
- Pricing by Fourier inversion
> Avoid using high $u \rightarrow$ use direct integration rather than FFT
> Use the control variate technique
- Numerical solution for ODEs are competitive with analytical solutions
- Use LAPACK, never use the STL complex class in VC++, catch floating point exceptions and handle them, use Volodymyr Myrnyy's FFT implementation with $\mathrm{C}++$ template metaprogramming (vs. FFTW)

Questions

- Contact details:

Péter Dobránszky

peter@dobranszky.com

- Further details:
http://peter.dobranszky.com

